Mitochondrial ferritin limits oxidative damage regulating mitochondrial iron availability: hypothesis for a protective role in Friedreich ataxia.

نویسندگان

  • Alessandro Campanella
  • Elisabetta Rovelli
  • Paolo Santambrogio
  • Anna Cozzi
  • Franco Taroni
  • Sonia Levi
چکیده

Mitochondrial ferritin (FtMt) is a nuclear-encoded iron-sequestering protein that specifically localizes in mitochondria. In mice it is highly expressed in cells characterized by high-energy consumption, while is undetectable in iron storage tissues like liver and spleen. FtMt expression in mammalian cells was shown to cause a shift of iron from cytosol to mitochondria, and in yeast it rescued the defects associated with frataxin deficiency. To study the role of FtMt in oxidative damage, we analyzed the effect of its expression in HeLa cells after incubation with H(2)O(2) and Antimycin A, and after a long-term growth in glucose-free media that enhances mitochondrial respiratory activity. FtMt reduced the level of reactive oxygen species (ROS), increased the level of adenosine 5'triphosphate and the activity of mitochondrial Fe-S enzymes, and had a positive effect on cell viability. Furthermore, FtMt expression reduces the size of cytosolic and mitochondrial labile iron pools. In cells grown in glucose-free media, FtMt level was reduced owing to faster degradation rate, however it still protected the activity of mitochondrial Fe-S enzymes without affecting the cytosolic iron status. In addition, FtMt expression in fibroblasts from Friedreich ataxia (FRDA) patients prevented the formation of ROS and partially rescued the impaired activity of mitochondrial Fe-S enzymes, caused by frataxin deficiency. These results indicate that the primary function of FtMt involves the control of ROS formation through the regulation of mitochondrial iron availability. They are consistent with the expression pattern of FtMt observed in mouse tissues, suggesting a FtMt protective role in cells characterized by defective iron homeostasis and respiration, such as in FRDA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mitochondrial ferritin in the regulation of brain iron homeostasis and neurodegenerative diseases

Mitochondrial ferritin (FtMt) is a novel iron-storage protein in mitochondria. Evidences have shown that FtMt is structurally and functionally similar to the cytosolic H-chain ferritin. It protects mitochondria from iron-induced oxidative damage presumably through sequestration of potentially harmful excess free iron. It also participates in the regulation of iron distribution between cytosol a...

متن کامل

The expression of human mitochondrial ferritin rescues respiratory function in frataxin-deficient yeast.

Mitochondrial ferritin (MtF) is structurally and functionally similar to the cytosolic ferritins, molecules designed to store and detoxify cellular iron. MtF expression in human and mouse is restricted to the testis and few tissues, and it is abundant in the erythroblasts of patients with sideroblastic anemia, where it is thought to protect the mitochondria from the damage caused by iron loadin...

متن کامل

Characterization of human mitochondrial ferritin promoter: identification of transcription factors and evidences of epigenetic control

Mitochondrial ferritin (FtMt) is an iron storage protein belonging to the ferritin family but, unlike the cytosolic ferritin, it has an iron-unrelated restricted tissue expression. FtMt appears to be preferentially expressed in cell types characterized by high metabolic activity and oxygen consumption, suggesting a role in protecting mitochondria from iron-dependent oxidative damage. The human ...

متن کامل

Ddh232 2279..2288

Mitochondrial ferritin (MtF) is structurally and functionally similar to the cytosolic ferritins, molecules designed to store and detoxify cellular iron. MtF expression in human and mouse is restricted to the testis and few tissues, and it is abundant in the erythroblasts of patients with sideroblastic anemia, where it is thought to protect the mitochondria from the damage caused by iron loadin...

متن کامل

Friedreich ataxia: the oxidative stress paradox.

Friedreich ataxia (FRDA) results from a generalized deficiency of mitochondrial and cytosolic iron-sulfur protein activity initially ascribed to mitochondrial iron overload. Recent in vitro data suggest that frataxin is necessary for iron incorporation in Fe-S cluster (ISC) and heme biosynthesis. In addition, several reports suggest that continuous oxidative damage resulting from hampered super...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human molecular genetics

دوره 18 1  شماره 

صفحات  -

تاریخ انتشار 2009